Понятие удельного электрического сопротивления медного проводника

Дата публикации: 26 марта 2013.
Категория: Электротехника.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Материал проводника Удельное сопротивление ρ в
Серебро
Медь
Алюминий
Вольфрам
Железо
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
0,016
0,0175
0,03
0,05
0,13
0,2
0,42
0,43
0,5
0,94
1,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Металл

α

Металл

α

Серебро
Медь
Железо
Вольфрам
Платина
0,0035
0,0040
0,0066
0,0045
0,0032
Ртуть
Никелин
Константан
Нихром
Манганин
0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

rt = r0 [1 ± α (tt0)].

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

rt = r0 [1 ± α (tt0)] = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 2019 – 560с.

Удельное сопротивление — прикладное понятие в электротехнике. Оно обозначает то, какое сопротивление на единицу длины оказывает материал единичного сечения протекающему через него току — другими словами, каким сопротивлением обладает провод миллиметрового сечения длиной один метр. Это понятие используется в различных электротехнических расчетах.

Важно понимать различия между удельным электрическим сопротивлением постоянному току и удельным электросопротивлением переменному току. В первом случае сопротивление вызывается исключительно действием постоянного тока на проводник. Во втором случае переменный ток (он может быть любой формы: синусоидальной, прямоугольной, треугольной или произвольной) вызывает в проводнике дополнительно действующее вихревое поле, которому также создается сопротивление.

Физическое представление

В технических расчетах, предполагающих прокладку кабелей различных диаметров, используются параметры, позволяющие рассчитать необходимую длину кабеля и его электрические характеристики. Одним из основных параметров является удельное сопротивление. Формула удельного электрического сопротивления:

ρ = R * S / l, где:

  • ρ — это удельное сопротивление материала;
  • R — омическое электросопротивление конкретного проводника;
  • S — поперечное сечение;
  • l — длина.

Размерность ρ измеряется в Ом•мм2/м, или, сократив формулу — Ом•м.

Значение ρ для одного и того же вещества всегда одинаковое. Следовательно, это константа, характеризующая материал проводника. Обычно она указывается в справочниках. Исходя из этого уже можно проводить расчет технических величин.

Важно сказать и об удельной электрической проводимости. Эта величина является обратной удельному сопротивлению материала, и используется наравне с ним. Ее также называют электропроводностью. Чем выше эта величина, тем лучше металл проводит ток. Например, удельная проводимость меди равна 58,14 м/(Ом•мм2). Или, в единицах, принятых в системе СИ: 58 140 000 См/м. (Сименс на метр — единица электропроводности в СИ).

Удельное сопротивление различных материалов

Говорить об удельном сопротивлении можно только при наличии элементов, проводящих ток, так как диэлектрики обладают бесконечным или близким к нему электросопротивлением. В отличие от них, металлы — очень хорошие проводники тока. Измерить электросопротивление металлического проводника можно с помощью прибора миллиомметра, или еще более точного — микроомметра. Значение измеряется между их щупами, приложенными к участку проводника. Они позволяют проверить цепи, проводку, обмотки двигателей и генераторов.

Металл

ы разнятся между собой по способности проводить ток. Удельное сопротивление различных металлов — параметр, характеризующий это отличие. Данные приведены при температуре материала 20 градусов по шкале Цельсия:

  • Серебро (ρ = 0,01498 Ом•мм2/м);
  • Алюминий (ρ = 0,027);
  • Медь (ρ = 0,01721);
  • Ртуть (ρ = 0,94);
  • Золото (ρ = 0,023);
  • Железо (ρ = 0,1);
  • Вольфрам (ρ = 0,0551);
  • Латунь (ρ = 0,026…0,109);
  • Бронза (ρ = 0,095);
  • Сталь (ρ = 0,103…0,14);
  • Сплав никеля, марганца, железа и хрома — нихром (ρ = 1,051…1,398).

Параметр ρ показывает, каким сопротивлением будет обладать метровый проводник с сечением 1 мм2. Чем больше это значение, тем больше электросопротивление будет у нужного провода определенной длины. Наименьшее ρ, как видно из списка, у серебра, сопротивление одного метра из этого материала будет равно всего 0,015 Ом, но это слишком дорогой металл для использования его в промышленных масштабах. Следующим идет медь, которая в природе встречается гораздо чаще (не драгоценный, а цветной металл). Поэтому медная проводка очень распространена.

Применение медных проводников

Медь является не только хорошим проводником электрического тока, но и очень пластичным материалом. Благодаря этому свойству медная проводка лучше укладывается, она устойчива к изгибам и растяжению.

Медь очень востребована на рынке. Из этого материала производят множество различных изделий:

  • Огромное многообразие проводников;
  • Автозапчасти (например, радиаторы);
  • Часовые механизмы;
  • Компьютерные составляющие;
  • Детали электрических и электронных приборов.

Удельное электрическое сопротивление меди является одним из лучших среди проводящих ток материалов, поэтому на ее основе создается множество товаров электроиндустрии. К тому же медь легко поддается пайке, поэтому очень распространена в радиолюбительстве.

Высокая теплопроводность меди позволяет использовать ее в охлаждающих и обогревающих устройствах, а пластичность дает возможность создавать мельчайшие детали и тончайшие проводники.

Зависимость электропроводности от температуры

Проводники электрического тока бывают первого и второго рода. Проводники первого рода — это металлы. Проводники второго рода- это проводящие растворы жидкостей. Ток в первых переносят электроны, а переносчики тока в проводниках второго рода —ионы, заряженные частицы электролитической жидкости.

Говорить о проводимости материалов можно только в контексте температуры окружающей среды. При более высокой температуре проводники первого рода увеличивают свое электросопротивление, а второго, напротив, уменьшают. Соответственно, существует температурный коэффициент сопротивления материалов. Удельное сопротивление меди Ом м возрастает при увеличении нагрева. Температурный коэффициент α тоже зависит только от материала, эта величина не имеет размерности и для разных металлов и сплавов равна следующим показателям:

  • Серебро — 0,0035;
  • Железо — 0,0066;
  • Платина — 0,0032;
  • Медь — 0,0040;
  • Вольфрам — 0,0045;
  • Ртуть — 0,0090;
  • Константан — 0,000005;
  • Никелин — 0,0003;
  • Нихром — 0,00016.

Определение величины электросопротивления участка проводника при повышенной температуре R (t), вычисляется по формуле:

R (t) = R (0) · [1+ α·(t-t (0))], где:

  • R (0) — сопротивление при начальной температуре;
  • α — температурный коэффициент;
  • t — t (0) — разность температур.

Например, зная электросопротивление меди при 20 градусах Цельсия, можно вычислить, чему оно будет равно при 170 градусах, то есть при нагреве на 150 градусов. Исходное сопротивление увеличится в [1+0,004·(170−20)] раз, то есть в 1,6 раз.

При увеличении температуры проводимость материалов, напротив, уменьшается. Так как это величина, обратная электросопротивлению, то и уменьшается она ровно во столько же раз. Например, удельная электропроводность меди при нагреве материала на 150 градусов уменьшится в 1,6 раз.

Существуют сплавы, которые практически не изменяют своего электросопротивления при изменении температуры. Таков, к примеру, константан. При изменении температуры на сто градусов его сопротивление увеличивается всего на 0,5%.

Если проводимость материалов ухудшается с нагревом, она улучшается с понижением температуры. С этим связано такое явление, как сверхпроводимость. Если понизить температуру проводника ниже -253 градусов Цельсия, его электросопротивление резко уменьшится: практически до нуля. В связи с этим падают затраты на передачу электрической энергии. Единственной проблемой оставалось охлаждение проводников до таких температур. Однако в связи с недавними открытиями высокотемпературных сверхпроводников на базе оксидов меди, охлаждать материалы приходится уже до приемлемых значений.

Лабораторная
работа Э
3

Цель
работы:

освоить приборы и методы измерения
сопротивления проводников, определить
удельное сопротивление проводника.

Электрическое
сопротивление характеризует противодействие
проводника или электрической цепи
упорядоченному перемещению носителей
тока [2–4].
Согласно закону Ома, сила тока в однородном
участке цепи равна отношению напряжения
U

на
его концах к сопротивлению этого участка
R:

.
(3.1)

В
этом случае электрическое сопротивление
называют омическим
или активным.
Оно зависит от материала проводника,
его размеров и формы. Для
однородного по составу линейного
проводника с поперечным сечением S
и
длиной l

, (3.2)

где

– коэффициент пропорциональности,
характеризующий материал проводника.
Называется этот коэффициент удельным
электрическим сопротивлением

и численно равен сопротивлению однородного
цилиндрического проводника, изготовленного
из данного материала, имеющего единичную
длину и единичную площадь поперечного
сечения.

Из
формулы (3.2) следует

, (3.3)

то
есть, чтобы определить удельное
сопротивление однородного по химическому
составу проводника, имеющего постоянную
площадь поперечного сечения, необходимо
измерить его сопротивление постоянному
току и геометрические параметры.

Методы измерений сопротивления проводника

В
работе реализуют три метода измерения
сопротивления проводника:

1)
технический метод – по измеренным
значениям тока и напряжения;

2)
мостовой метод;

3)
с использованием омметра.

1.
Технический
метод

осуществляют по схеме, приведённой на
рис. 3.1.

Рис. 3.1. Электрическая схема:

1 – регулируемый
источник постоянного напряжения (0…+15
В); 2 – вольтметр;
3 – амперметр; 4 –резистор R

При
этом измеряют ток I
через резистор и падение напряжения на
нём U.
Это позволяет рассчитать неизвестное
сопротивление резистора R
(3.1):

. (3.4)

2.
Метод измерений с
помощью моста постоянного тока
.
Измерительные
мосты – это высокоточные
приборы,
предназначенные для измерения
электрических сопротивлений, ёмкостей,
индуктивностей и других параметров
методом уравновешенных мостовых цепей.
На рис. 3.2 приведена схема простейшего
моста (мостик
Уитстона)
,
который используется для измерения
сопротивлений.

Рис. 3.2. Электрическая схема простейшего
моста Уитстона:

1 – магазин
сопротивлений RМ,
2 – измеряемое сопротивление R,
3 – амперметр 4 – сопротивление R1
= 100 Ом, 5 – сопротивление R2
= 10 Ом,; 6 – сопротивление R0
= 470 Ом, 7 – источник постоянного напряжения
«+15 В»

Подбирая
значение сопротивления магазинаRМ,
добиваются равенства потенциалов точек
а
и б,
при этом ток IA,
текущий через амперметр,
обращается
в нуль. В таком уравновешенном состоянии
моста выполняются равенства:

;
;;. (3.5)

Из
этих соотношений следует расчётная
формула

.
(3.6)

Резистор
R0
в схеме служит для ограничения тока,
протекающего через мост.

3.
Использование
омметра

является наиболее простым методом:
достаточно подключить измеряемый
резистор к входам омметра и считать
показания прибора. В основе работы
омметров обычно лежит приближённый
технический метод: шкалу прибора
градуируют с использованием формулы
(3.4) при фиксированном напряжении U
батареи питания. Этот метод применяют,
когда не нужна высокая точность измерений.